
The Perl Review
Volume 0 Issue 6 November 1, 2002

Like this issue? Support The Perl Review with a donation! http://www.ThePerlReview.com/

Letters i

Community News ii

Short Notes iii

Simple RSS with Perl 1

brian d foy

Delightful Languages: Ruby 7

Mike Stok

Who’s Doing What? Analyzing Ethernet LAN Traffic 18

Paul Barry

Book Reviews 24

Staff

Like this issue? Support The Perl Review with a donation! http://www.ThePerlReview.com/

Web Access http://www.ThePerlReview.com/ Email letters@theperlreview.com Publisher brian d
foy Editor Andy Lester Technical Editors Kurt Starsinic, Adam Turoff Copy Editors Beth Linker,
Glenn Maciag, Chris Nandor Contributors David H. Adler, Paul Barry, Neil Bauman, brian d foy, Andy
Lester, Mike Stok, Betsy Waliszewski

The Perl Review

Letters
Send your letters, comments, and suggestions to
letters@theperlreview.com

TPR Subscriptions

I’d like to subscribe to The Perl Review. However,
I prefer not to use PayPal. If you tell me where to
send a check or cash, I’d be happy to do so.

– Gregor Dodson

brian writes: A lot of people have said something
similar, and at the moment we do not have a better
way to take money. Once we get going with a printed
version, we will have another way to pay with credit
cards and a way to take checks. Right now we want to
stay lean and mean which makes us avoid merchant
and bank services that charge monthly fees. PayPal
is free. We will keep track of everyone who wants to
use something other than PayPal and let you know
when we have an alternative method. We apologize
for the inconvenience.

About this issue
Mike Stok takes a look at Ruby and likes what he
finds, while brian d foy reviews the available Ruby
books. Paul Barry, the author of Programming the
Network with Perl builds a network analyzer in under
100 lines of Perl. brian d foy shows a simple use of
XML::RSS, which we actually use on our web site.
Oh, and Sarah says ”Hi”, although she did not think
we would really print that.

Perl on the web
The Perl Review
http://www.theperlreview.com – the website for this
magazine with information for readers and authors

Use.perl
http://use.perl.org – Perl news and commentary

Correction
We made a mistake typesetting Robby Walkers “File-
handle Ties” article in The Perl Review (0, 5). In
his Multiplex.pm example, line 8 should have read

print $_ $_[0] for @$self;. We incorrectly used
$_[1] and apologize for the confusion.

Write for TPR
Have something to say about Perl? The Perl Re-
view wants first person accounts about using Perl. If
you cannot write a complete article you can write a
“Short Note”. Want to tell everyone about a book
you have read? Write a book review! Were you at a
Perl function? Give us a trip report!

We would like to get articles or “Short Notes” on

• Bioinformatics

• Perl internals

• Cute Perl hacks

• Debugging Perl

• Creating modules

• and more . . .

We also like articles aimed at Perl for beginning pro-
grammers. Perl people take for granted some things
that never make it into books or get passed on to be-
ginners. Do you have something new Perl program-
mers should know? Perhaps:

• Using templates

• Using configuration files

• Argument processing

• Deciphering documentation

You can get submission guidelines from our website,
http://www.theperlreview.com .

Volunteer for TPR
We have not turned into a business yet, so we still
rely on the generosity and availability of volunteers.
We are currently looking for someone to become our
RSS wrangler so we can provide feeds of The Perl
Review.

i

The Perl Review

Community News
Send us your news stories at news@theperlreview.com
.

The Perl Journal survives
http://www.tpj.com
The Dr. Dobb’s crew from CMP, the publisher that
put TPJ in SysAdmin Magazine, is saving TPJ by
publishing a monthly electronic version starting this
month. You can subscribe for $12 a year. Columnists
include Simon Cozens and brian d foy.

DoD uses Perl
http://www.egovos.org/pdf/dodfoss.pdf
A recent Mitre report prepared for the United States
Department of Defense evaluates the value of open
source software to them. Conclusion—the DoD should
not stop using Perl.

500th job posted
http://jobs.perl.org
Belcan IT of Cincinnati, Ohio posted the 500th job
to the Perl Jobs site. You can get job announcements
in email, on the web site, through their RSS feed (see
the RSS article in this issue, for example), or the
nntp.perl.org newsgroup interface.

Quiz of the Week
perl-qotw-subscribe@plover.com
Mark-Jason Dominus now publishes a weekly Perl
quiz with answers posted in succeeding weeks. Email
the subscription address to start receiving the quiz.
Dominus provides regular and expert versions, al-
though no prize money is to be had in either category.

Clean out CPAN!
http://use.perl.org/ brian d foy/journal/8314
The size of CPAN is almost to the point that we will
need three CDs to fit it all—1.3Gb currently. Ran-
dal Schwartz, however, wrote a script to just mirror
the most recent versions of everything (excluding the
perl distribution itself, about 25Mb gzipped). The
mini-CPAN came out to be 225Mb. brian d foy in-
vented the “Schwartz Factor”, or ratio of the real
size of CPAN to its effective size, currently hovering
around 0.174. He estimates that with the current
size, if everyone cleaned out old distributions to get
the Schwartz Factor up to 0.4, everything will fit on
a single CD again.

New books
Publishers: to have us list your book, send us a note
at book reviews@theperlreview.com.

Essential Blogging
Benjamin Trott, et al.; O’Reilly & Associates;
0-596-00388-9; September 2002

Perl CD BookShelf, 3.0
Larry Wall, et al.; O’Reilly & Associates;
0-596-00389-7; September 2002

LDAP Programming
Clayton Donley; Manning;
1-930110-82-0; October 2002

Embedding Perl in HTML with Mason
Dave Rolsky & Ken Williams
O’Reilly & Associates;
0-596-00225-4; October 2002

Computer Science & Perl Programming:
Best of The Perl Journal
Edited by Jon Orwant
O’Reilly & Associates;
0-596-00310-2; November 2002

XML CD Bookshelf
O’Reilly & Associates;
0-596-00335-8; November 2002

Programming Web Services with Perl
Randy J. Ray & Pavel Kulchenko
O’Reilly & Associates;
0-596-00335-8; December 2002

Would you like to review a book? Send your review
to book reviews@theperlreview.com

Perl In the Press
Know of another magazine with regular Perl content?
Let us know at letters@theperlreview.com

The Perl Journal – http://www.tpj.com

Linux Magazine – http://www.linux-mag.com/

;login: – http://www.usenix.org/publications/login/

Unix Review – http://www.unixreview.com/

ii

The Perl Review

Short Notes
If you have something that you want to show off with-
out writing an entire article, like a cool Perl trick, a
module you just released or something happening in
the Perl community, send your short note, between
200 and 400 words, to short notes@theperlreview.com.

Perl’s True Success is in The Telling
Betsy Waliszewski, betsy@oreilly.com
Product Manager for Perl books

My first day on the job at O’Reilly & Associates was
unforgettable. Hired primarily as a Perl advocate, I
spent that day at the O’Reilly Open Source Conven-
tion in Monterey, California, surrounded by the most
influential people in the Perl community. Boy, was I
overwhelmed! I managed to learn everyone’s contri-
bution to the language (not an easy task), but I came
away puzzled.

How was I going to translate all this devotion and
enthusiasm for Perl to IT managers? How could I
convince the programming world at large that Perl
was the real thing?

After tossing around ideas with O’Reilly editor Nat
Torkington, we decided to promote Perl through a
series of stories about folks who actually use it. We
sought case studies showing how programmers work-
ing for mainstream companies had used Perl in non-
trivial applications that were mission-critical. The
goal of these “Perl Success Stories” was to demon-
strate that Perl is not a toy language, but an impor-
tant programming component that the big wheels of
commerce could rely on to do a variety of tasks.

It wasn’t easy to get these stories in the beginning.
Programmers who answered our call for clear-cut ex-
amples of how much time, money and pain Perl saved
them needed approval from their bosses to release
this information. People at O’Reilly who wrote the
articles sent drafts back and forth, making sure they
were accurate and acceptable without having them
turn into puff pieces.

We got some amazing stuff. Our first story talked
about Perl’s use at the Federal Reserve. Others de-
tailed its use by Amazon, Agilent, UniCredito Ital-
iano (Italy’s top bank), and the U.S. Census Bureau.

Each story chronicled a different—and very critical—
use for Perl. Italy’s bank used Perl DBI for a data
migration from one enterprise data warehouse to an-
other. The Census Bureau employs Perl to display
our country’s leading financial and economic indica-
tors online, with twice-daily updates from thousands
of sources. Perl helped Carnegie-Mellon University
develop speech synthesizers for robotics applications.
And programmers developed a Perl-based web appli-
cation quickly to run the Swedish National Pension.

As the stories were done, I posted them on our web
site (perl.oreilly.com), and once I’d collected eight of
them, I was able to put them together in a booklet for
distribution at the Perl 4 Conference. The response
was incredible and I received many requests for the
booklet afterward. We also sent it to our corporate
mailing list.

Three years later, I no longer have to hunt for Perl
Success Stories. Programmers now send them di-
rectly to me, and you can find the latest on my weblog
at www.oreillynet.com (I’m a bit behind in getting
them online, but don’t worry—they’ll all be posted).
I also just finished printing the third edition of our
collection of Perl Success Stories, a booklet which was
distributed at the Perl 6 Conference. We now have
more than 25 stories and new ones roll in regularly.

How has corporate America received these stories?
Along with other open source tools, Perl is now be-
ing taken seriously by IT managers who need a quick
development solution—not just for web applications,
but as a general purpose language for quick prototyp-
ing, system utilities, software tools, system manage-
ment tasks, database access, graphical programming,
and networking. The momentum is genuinely build-
ing out there.

Do you have a Perl success story? Write it up and
send it to me at betsy@oreilly.com, making sure that
you cover the following points:

• The company and its business

• The name and function of a the Perl application

• Rough size of the code and its development time

• Rough idea of how heavily the code is used
(number of users)

iii

The Perl Review

Promoting Perl has been an incredibly fun ride these
past three years, and the best part is working with
the Perl community. The spirit of sharing and helping
each other is unusual and fantastic. I’ve learned so
much about Perl and why it’s important. Thank you
to all the people who have contributed to this project.

This story is simultaneously published on the O’Reilly
website: http://www.oreillynet.com/pub/a/oreilly/
perl/2002/11/04/perlsuccess.html

YAPC::Europe trip report
David Adler, dha@panix.com

YAPC::Europe is always an interesting experience for
the out-of-towners. We learned that beer, pretzels
and sausage really are a huge part of life in Munich.

But that was outside the walls of the Technische Uni-
versität München, where we ingested many different
flavors of Perl. Unsurprisingly, although this year’s
conference theme was “The Science of Perl”, the sub-
jects ranged widely.

In line with the theme, Karen Pauley talked about
psychometric testing and Lucy McWilliams gave a
lightning talk on using perl in the study of the sex
lives of flies (no, really). Larry Wall gave a vari-
ant on his “State of the Onion” talk, using the con-
tents of Scientific American as a series of jumping off
points for talking about Perl and the community sur-
rounding it. Jos Boumans won the “most talks given”
award, with an introduction to object oriented pro-
gramming, a discussion of his CPANPLUS module
and an introduction to POE.

This was the first YAPC::Europe for a number of the
big names in Perl. Thanks to a mini-conference in
Zurich, Larry Wall, Damian Conway, Allison Ran-
dall and Dan Sugalski were able to come to YAPC in
Europe for the first time. Needless to say, this was a
welcome turn of events.

Much attention was given to the future of Perl, with
the Perl 6 team giving various talks on aspects of
that project and current Perl 5 Pumpking Hugo van
der Sanden not only giving a talk on Perl 5.10, but
spending a good deal of time asking people what they
wanted to see in it.

Greg McCarroll again demonstrated his ability to get
people to empty their wallets for a good cause at the

auction by raising 3500 Euros to offset any losses of
the conference, with the balance going to The Perl
Foundation. Michael G. Schwern received much play
in the auction by arm wrestling Damian (he lost) and,
finally, auctioning off about half of the clothes he was
wearing. It’s a long story, but we got money for this!

Days full of Perl, evenings full of social events. At-
tendees also got a beer krug with the conference logo.
Everyone left happy.

News from Geek Cruises
Neil Bauman, neil@geekcruises.com
Somewhere in the Caribbean, October 25, 2002

We are a crew of just about 125 Linux geeks here
in the Western Caribbean! I’m sending this, using a
wireless high-speed connection, from our ship, Hol-
land America’s MS Maasdam.

We’re having, of course, a fabulous time. So far,
Guido van Rossum’s “Introduction to Python” and
Ted Tso’s “Introduction to the Linux Kernel” have
been the most popular. Of course, “Learning Perl”,
“Introduction to PHP”, and “More Than You Ever
Wanted to Know About Filesystems” have been quite
popular as well.

Earlier today Linus, Guido van Rossum, Eric Ray-
mond, and colleagues conducted a panel discussion
and Q & A with the Jamaica Linux Users Group in
Ocho Rios, Jamaica. We posed for the camera out-
side the meeting room after our meeting. Linus is
holding two of his daughters; Guido van Rossum is
in the center, staring at the camera, with his mouth
WIDE open; Eric Raymond is just to the right of
me; I’m the bald guy in the catcher’s position, in the
front row, almost directly below Guido; to the right of
me is Steve Oualline, author of Practical C Program-
ming, Practical C++ Programming, and Vim – Vi
Improved; to Steve’s right is Theodore Tso, a Linux
kernel developer since almost the very beginnings of
Linux; and our hosts, the members of the Jamaica
Linux Users Group.
http://www.geekcruises.com/gifs/ll2/TheRuins.jpg

After our morning meeting a bunch of us went to
Dunn’s River Falls. What makes this interesting is
that you climb up the falls, not just hang out enjoying
the rushing water. In that photo you see about 20%
of the trek.
http://www.geekcruises.com/gifs/ll2/DunnsFall.jpg

iv

The Perl Review

Last night Linus held court in the “Card Room”—
actually, based on the laughs I’d say it was more like
a comedy club than a court room. He was, as usual,
blunt and irreverent.
http://205.122.23.229/peng/linusq-a.ogg

[Editor: GeekCruises has a Perl Whirl in 2003:
http://www.geekcruises.com]

Perl at the MacOS X Conference

brian d foy, comdog@panix.com
Santa Clara, October 1, 2002

O’Reilly & Associates first Mac OS X Conference felt
a lot like their first Perl conference—a lot of cool,
new things happening in a wide-open field. Apple is
still learning a lot of things about the possibilities of
Darwin, and even held a secret meeting with lots of
big names, including Perl hacker Nat Torkington, to
get their opinions on new directions.

On the first morning I gave a tutorial about program-
ming Perl on Mac OS X to highlight the differences,
not the similarities. A lot of the audience really knew
their Macs and I learned quite a bit from their ency-
clopedic knowledge of Mac OS X.

That afternoon Dan Sugalski gave an excellent talk
about CamelBones which provides Perl hooks into
the Cocoa frameworks. In the evening I moderated a
Perl discussion that had an amazing group of people
show up—Dan Sugalski, Matthias Neeracher (origi-
nal author of MacPerl and now an Apple employee),
Rich Morin of Primetime Freeware, Vicki Brown (co-
author of MacPerl: Power and Ease), and David
Wheeler, maintainer of Bricolage.

Later in the week John Labowitz talked about his
Mac::AppleScript::Glue module along with graphics
programming with Perl, and David Wheeler talked
about moving from Linux to Mac OS X.

Of course, Apple was a major sponsor of the event
which works out well for the attendees who want to
use the terminal room. It had the latest and most
beautiful Apple hardware with their large flat-screen
monitors and a friendly Apple technician available.

O’Reilly makes most of the presentations available
online. http://conferences.oreillynet.com.

v

Simple RSS with Perl

brian d foy, comdog@panix.com

Abstract

The Rich Site Summary (RSS) provides a way for web site operators to allow other people to syndicate
the web site content. The web site operators publish a feed which other people can download, parse, and
display on their own site. I present the RSS files that The Perl Review provides along with the program
we use to parse other site’s RSS files. I only show RSS 0.9.

1 Introduction

The Rich Site Summary (RSS) is a set of stories, usually from the same web site. The RSS file contains
XML data which other programs can parse to create custom presentations.

There are several major versions of RSS. The first version, 0.9, is simple to read and simple to use. It does
not contain as much information as later versions which provide various additions to the RSS format—even
arbitrary extension through XML namespace magic. I think that is overkill for my purposes, and I do not
want to do the extra work to handle the extra features. I use version 0.9, and I only show that in this article.

The Perl Review publishes RSS files for each issue and for collections of related articles. A few other web
sites actually use them. In the other direction, we use several other sites’ RSS files on our web site for “Perl
at a Glance”.

2 Creating RSS

Files in RSS 0.9 typically have the extension .rdf for Resource Description Framework. The XML format is
very simple. Code listing 1 shows the actual RSS file for the last issue. Line 1 is the required XML header.
Line 3 pulls in the appropriate definitions. The RSS data has channel and item data. The channel is the
name of the feed and typically has a title and a link to the original website. Line 7 starts my channel element
with a title element with the name of the issue, and a link element to the issue file. The rest of the elements
are items, sometimes called headlines. Each item has a title and link.

Code Listing 1: RSS file format

1 <?xml version="1.0"?>

2

3 <rdf:RDF

4 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

5 xmlns="http://my.netscape.com/rdf/simple/0.9/">

6

7 <channel>

8 <title>The Perl Review, v0 i5, September 2002</title>

1

Simple RSS with Perl

9 <link>http://www.theperlreview.com/Issues/The_Perl_Review_0_5.pdf</link>

10 </channel>

11

12 <item>

13 <title>Extreme Mowing, by Andy Lester</title>

14 <link>http://www.theperlreview.com/Articles/v0i5/extreme_mowing.pdf</link>

15 </item>

16

17 <item>

18 <title>What Perl Programmers Should Know About Java, by Beth Linker</title>

19 <link>http://www.theperlreview.com/Articles/v0i5/perl-java.pdf</link>

20 </item>

21

22 <item>

23 <title>Filehandle Ties, by Robby Walker</title>

24 <link>http://www.theperlreview.com/Articles/v0i5/filehandle_ties.pdf</link>

25 </item>

26

27 <item>

28 <title>The Iterator Design Pattern, by brian d foy</title>

29 <link>http://www.theperlreview.com/Articles/v0i5/iterators.pdf</link>

30 </item>

31

32 </rdf:RDF>

Creating this file is very easy. I can write it by hand, but I can also create it with a program, which I want
to do since all of the data comes from a database and I want to automate the process.

Code listing 2 shows a simple program to create the RSS data in code listing 1. The XML::RSS module
can handle several versions of RSS, so in line 5 I specify version 0.9. I can change the version number to
another one that XML::RSS can handle and see the results. Other versions are a bit more complicated, but
XML::RSS handles them for me through the same interface so I can decide to switch later and not have to
completely rewrite the script.

On line 10, I create the RSS channel from the first two lines from DATA. On line 15, I start a while loop
to process the rest of the data. I skip lines without non-whitespace, chomp the line that I read in the while
condition, then read another line of data and chomp that. I expect the first line to be the title and the line
after that to be the link address. I add these to my RSS object on line 22.

On line 28, I simply print the RSS data as a string. It should look close to the output in code listing 1,
although some people may see slight differences for different versions of XML::RSS.

Code Listing 2: Create RSS files with XML::RSS

1 #!/usr/bin/perl -w

2 use strict;

3

4 use XML::RSS;

5 my $rss = XML::RSS->new(version => ’0.9’);

6

7 chomp(my $channel_title = <DATA>);

8 chomp(my $channel_link = <DATA>);

9

http://www.theperlreview.comThe Perl Review (0 , 6) · 2

Simple RSS with Perl

10 $rss->channel(

11 title => $channel_title,

12 link => $channel_link,

13);

14

15 while(defined(my $title = <DATA>))

16 {

17 next unless $title =~ /\S/;

18 chomp $title;

19

20 chomp(my $link = <DATA>);

21

22 $rss->add_item(

23 title => $title,

24 link => $link,

25);

26 }

27

28 print $rss->as_string;

29

30 __END__

31 The Perl Review, v0 i5, September 2002

32 http://www.theperlreview.com/Issues/The_Perl_Review_0_5.pdf

33

34 Extreme Mowing, by Andy Lester

35 http://www.theperlreview.com/Articles/v0i5/extreme_mowing.pdf

36

37 What Perl Programmers Should Know About Java, by Beth Linker

38 http://www.theperlreview.com/Articles/v0i5/perl-java.pdf

39

40 Filehandle Ties, by Robby Walker

41 http://www.theperlreview.com/Articles/v0i5/filehandle_ties.pdf

42

43 The Iterator Design Pattern, by brian d foy

44 http://www.theperlreview.com/Articles/v0i5/iterators.pdf

3 Parsing RSS

The XML::RSS module makes parsing RSS even more easy that creating it. In code listing 3, which shows
the actual program we use to generate the HTML for “Perl at a Glance”, most of the work deals with HTML,
not RSS. Line 7 defines the RSS files to download. I found those by either visiting the site or asking the
author if they had RSS files. For instance, Randal Schwartz has RSS feeds for most of his columns although
he does not advertise this on his web site—at least not somewhere I could find.

Line 18 defines the location the program stores output files. Each feed has an associated output file which
contains just its portion of HTML that another program collates into the final web page.

Line 20 starts the foreach loop which cycles through all of the RSS files. On line 22, I copy the URL to $file
so I can manipulate $file and use it as the file name in the open on line 26. If I cannot open the file, I skip
to the next feed. On line 34, I select the file handle I just opened so I do not have to specify it in all of the
print statements.

http://www.theperlreview.comThe Perl Review (0 , 6) · 3

Simple RSS with Perl

On line 36, I create a new RSS object. I do not have to specify the version I want to use because XML::RSS
figures it out based on the data I feed it in line 38. Once the module parses the data, I simply access the
parts that I need. On lines 40 and 41 I get the channel title and image, which are hash references I store in
$channel and $image.

On line 43, I start the HTML output. At some point I will change this program to use Text::Template,
but for now something is better than nothing, even if this is horribly wrong. Next issue I will convert this
program to store configuration and template data apart from the code to make up for it.

On line 49, I check if $image has a url key. The feed might not have included a logo and I do not want a
broken image icon to show up if it did not. With an image, I use the image location to form the link back
to the original site, and without an image, I use the channel title.

On line 67, I iterate through the items in the feed and print a link for each one. Once I finish with the items
I finish the HTML output and close the filehandle.

Code Listing 3: Fetch and parse RSS feeds

1 #!/usr/bin/perl -w

2 use strict;

3

4 use LWP::Simple;

5 use XML::RSS;

6

7 my @files = qw(

8 http://use.perl.org/useperl.rss

9 http://search.cpan.org/rss/search.rss

10 http://jobs.perl.org/rss/standard.rss

11 http://www.perl.com/pace/perlnews.rdf

12 http://www.perlfoundation.org/perl-foundation.rdf

13 http://www.stonehenge.com/merlyn/UnixReview/ur.rss

14 http://www.stonehenge.com/merlyn/WebTechniques/wt.rss

15 http://www.stonehenge.com/merlyn/LinuxMag/lm.rss

16);

17

18 my $base = ’/usr/home/comdog/TPR/rss-html’;

19

20 foreach my $url (@files)

21 {

22 my $file = $url;

23

24 $file =~ s|.*/||;

25

26 my $result = open my $fh, "> $base/$file.html";

27

28 unless($result)

29 {

30 warn "Could not open [$file] for writing! $!";

31 next;

32 }

33

34 select $fh;

35

36 my $rss = XML::RSS->new();

37 my $data = get($url);

http://www.theperlreview.comThe Perl Review (0 , 6) · 4

Simple RSS with Perl

38 $rss->parse($data);

39

40 my $channel = $rss->{channel};

41 my $image = $rss->{image};

42

43 print <<"HTML";

44 <table cellpadding=1><tr><td bgcolor="#000000">

45 <table cellpadding=5>

46 <tr><td bgcolor="#aaaaaa" align="center">

47 HTML

48

49 if($image->{url})

50 {

51 my $img = qq||;

52

53 print qq|$img
\n|.

54 }

55 else

56 {

57 print qq|$$channel{title}
\n|.

58 }

59

60 print qq|$$channel{description}\n|;

61

62 print <<"HTML";

63 </td></tr>

64 <tr><td bgcolor="#bbbbff" width=200>

65 HTML

66

67 foreach my $item (@{ $rss->{items} })

68 {

69 print qq|>$$item{title}

\n|;

70 }

71

72 print <<"HTML";

73 </td></tr>

74 </td></tr></table>

75 </td></tr></table>

76 HTML

77

78 close $fh;

79 }

3.1 Updating RSS feeds automatically

Once I decide which feeds I want to process and how I want to present them, I want to fetch them automati-
cally. I can use crontab to schedule the program to run at certain times (cron comes with unix-like platforms
and is available as third-party tools for windows). The frequency that I run this program depends on how
often the sites update their feeds. I typically update things hourly, but not on the hour when everyone else
is probably updating their feeds. I update at 17 minutes past the hour.

17 * * * * /usr/home/comdog/bin/rss2html.pl

http://www.theperlreview.comThe Perl Review (0 , 6) · 5

Simple RSS with Perl

3.2 Some things I do not cover

The RSS format handles a lot more than what I have shown, but once I have XML::RSS doing the hard
work, everything else is easy. Other commonly-used features include search forms linking to the original site,
channel descriptions, item descriptions, channel meta-data for caching, fetching, and more.

3.3 Some places offering RSS feeds

None of this parsing magic is much use to anyone unless people offer RSS feeds to parse.

The Perl Review

This journal offers several different RSS feeds to choose from. http://www.theperlreview.com/rss/

“All the Perl that’s Practical to Extract and Report”

use.Perl has a feed of its stories - http://use.perl.org/useperl.rss

Recent modules

CPAN Search has a feed of the latest 10 modules

4 Conclusion

With a minimum of effort, I can create or parse RSS files. The XML::RSS module handles the details of
different versions for me so I can know as little or as much RSS as I care to know. When I parse an RSS
file, I can access its parts through familiar Perl data structures.

5 References

The Perl Review - http://www.theperlreview.com

Perl at a Glance - http://www.theperlreview.com/at a glance.shtml

O’Reilly Network RSS DevCenter - http://www.oreillynet.com/rss/

RSS News - http://blogspace.com/rss/

6 About the Author

brian d foy is the publisher of The Perl Review.

http://www.theperlreview.comThe Perl Review (0 , 6) · 6

Delightful Languages: Ruby

Mike Stok, mike@stok.co.uk

Abstract

This is a brief recounting of my initial impressions of and experience with the Ruby programming
language and its community. In many ways Ruby strikes the same chord in me that Perl did a decade
or more ago. I show Ruby from a Perl perspective.

1 Introduction to Ruby

When I first encountered Perl, I found the language to be a little strange coming from a C background.
From time to time I would use Perl to write things I would have written in C or shell, and soon Perl was my
tool of choice for many tasks.

Ruby is having a similar effect on me. Sometimes I prototype Perl code in Ruby, sometimes I just use Ruby
for the sake of seeing if I arrive at a different solution using a different language. Like Perl, Ruby makes
programming fun, but in a different way.

2 Rewriting Soundex

Ruby borrows features from many languages, and one of those is Perl. I can simply translate Perl code into
Ruby if I want. I will use the Soundex function as an example, as the algorithm is simple and my Perl
implementation will reveal something about my abilities as a programmer.

The Soundex algorithm is a simple hashing of the letters of a word to a four character code which brings
similar sounding words to the same code. In 1994 I posted a routine, shown in code listing 1, to comp.lang.perl
which shows both the simplicity of the Soundex algorithm and my Perl style at its worst (or best).

Code Listing 1: Original Perl soundex function

1 sub Soundex

2 {

3 local ($_, $f) = shift;

4

5 y;a-z;A-Z;;y;A-Z;;cd;$_ ne q???do{($f)=m;^(.);;s;$f+;;;

6 y;AEHIOUWYBFPVCGJKQSXZDTLMNR;00000000111122222222334556;;

7 y;;;cs;y;0;;d;s;^;$f;;s;$;0000;;m;(^.{4});;$1;}:q;;;

8 }

7

Delightful Languages: Ruby

This code survives, with a bug fix and some reformatting as the Text::Soundex module in Perl 5.8.01, shown
in code listing 2. The major difference between the routines is that the newer code makes use of Perl’s
subroutine call context to decide whether to return a single scalar or a list of scalars. This is a legacy from
Perl 4 days when Perl did not have map. These days I would leave it to the routine’s user to do the work
even if it means a few extra subroutine calls.

Code Listing 2: Current Perl soundex function

1 sub soundex

2 {

3 local (@s, $f, $fc, $_) = @_;

4

5 push @s, ’’ unless @s; # handle no args as a single empty string

6

7 foreach (@s)

8 {

9 $_ = uc $_;

10 tr/A-Z//cd;

11

12 if ($_ eq ’’)

13 {

14 $_ = $soundex_nocode;

15 }

16 else

17 {

18 ($f) = /^(.)/;

19 tr/AEHIOUWYBFPVCGJKQSXZDTLMNR/00000000111122222222334556/;

20 ($fc) = /^(.)/;

21 s/^$fc+//;

22 tr///cs;

23 tr/0//d;

24 $_ = $f . $_ . ’000’;

25 s/^(.{4}).*/$1/;

26 }

27 }

28

29 wantarray ? @s : shift @s;

30 }

2.1 Ruby Soundex code

I did a simple translation of the Perl code into Ruby2, shown in code listing 3. As the wantarray is a Perlish
idiom I left it out.

1Serious Text::Soundex users should grab Mark Mielke’s faster version from CPAN. I do not know why the current version
has survived so long in the official distribution.

2There is already a Soundex module in the Ruby Application Archive. Its author, Michael Neumann, took a more conven-
tional approach to its implementation than mine.

http://www.theperlreview.comThe Perl Review (0 , 6) · 8

Delightful Languages: Ruby

Code Listing 3: Soundex in Ruby

1 def soundex(string, nocode=nil)

2 copy = string.upcase.tr ’^A-Z’, ’’

3 return nocode if copy.empty?

4 first_letter = copy[0, 1]

5 copy.tr_s! ’AEHIOUWYBFPVCGJKQSXZDTLMNR’,

6 ’00000000111122222222334556’

7 copy.sub!(/^(.)\1*/, ’’).gsub!(/0/, ’’)

8 "#{first_letter}#{copy}000"[0 .. 3]

9 end

2.1.1 Perl and Ruby differences

No Semicolons

I did not use any semicolons in code listing 3. Ruby can use semicolons to separate expressions, but
most Ruby code uses line ends to indicate the end of an expression or statement. When a line ends in
the middle of an expression, Ruby realizes that it will continue on the next line. For example, I can
split x = 2 + 2 over two lines.

x = 2 +
2

Ruby sees a single expression as it expects something after the +.

If I wanted to put multiple statements on a line then I could use semicolons.

x = 2 + 2; y = x + 1

No Sigils

Ruby does not use sigils (the leading $, @, % character used in Perl) to indicate the type of a variable.
When retrieving an element from a Hash or an Array, the same operator, [], is used. The type of the
container I am accessing determines what I should put inside the brackets.

Ruby does use $, @, and @@ as prefixes, but I do not cover that in this article.

Named Parameters

Ruby’s method definitions let me name parameters and specify default values for optional parameters.
The string parameter is required, and the nocode parameter is optional. If I do not specify nocode,
then Ruby gives it the value nil.

Ruby checks the arity when I call a method to make sure that I required all parameters. If I try to
call soundex with the wrong number of arguments then Ruby raises an ArgumentError.

soundex() # => ArgumentError: wrong number of arguments(0 for 1)

No declarations

There are no equivalents of my or local. If I use a variable name then Ruby checks if there is already a
variable of that name in scope; if there is, Ruby reuses it, otherwise it creates a variable in the current
scope.

http://www.theperlreview.comThe Perl Review (0 , 6) · 9

Delightful Languages: Ruby

String Interpolation Using #{ ... }
Inside double quotes Ruby uses #{ ... } to interpolate any expression. I used double quotes to
concatenate first character, copy, and the literal 000, but I can put any expression between the braces
and Ruby interpolates the result into the string being generated by the double quotes.

Methods everywhere

All the subroutine calls are methods. Most of the methods, upcase, tr, length, are members of the
String class. As in Perl a method is a subroutine called in the context of an object.

Predicate method empty?

The empty? method ends with a question mark which is part of the method name. In Ruby this
conventionally means that the method is a predicate. This convention is not enforced by the interpreter.

In Perl I can say $string or return $soundex nocode; if I know the string cannot contain a solitary
0. Perl’s notion of truth means that the empty string or a string containing 0 are considered false. In
Ruby the only false values are nil and false, so I have to test string.

I could have used string.length == 0, but the name of the empty? method expresses my intent more
clearly.

Method chaining

string.upcase.tr ’^A-Z’, ’’ shows how I can chain methods in Ruby. The upcase method takes
the value referenced by string, converts it to upper case, then the tr method deletes the non-alphabetic
characters. The tr and upcase methods do not affect the value string refers to. Ruby’s convention is
that a destructive method name ends with a !. This is only a convention, so the Ruby interpreter does
not enforce it.

Copy data in String

As all data are objects in Ruby, string is a reference to an object. I was careful not to change the value
of the original string passed to the subroutine.

When I operate on the data referenced by copy, many of the methods end with a !. The tr! method
modifies the object it is called on. The tr method always gives you a new string as a result, but tr!
returns the modified, original string or nil.

Getting the First Character of a String

Ruby strings are sequences of integers, not arrays of characters.

The first time I tried to get a character from a string in Ruby, I used something like char = string[0].
This gave me the ASCII value of the first character of the string. Consulting the section on the String
class in Programming Ruby, I discovered that I need to use either a Range or a couple of numbers in
the brackets to get a substring.

2.2 A Brief Diversion - irb

I use the irb program which comes with Ruby as a test bed for Ruby code, much as I use perl -de 1 for
Perl. irb prints the result of each expression it evaluates, as in code listing 4. The irb(main):001:0> is
the irb prompt. When I enter an expression, the result irb prints before the next prompt.

http://www.theperlreview.comThe Perl Review (0 , 6) · 10

Delightful Languages: Ruby

Code Listing 4: irb session

1 [mike@ratdog tmp]$ irb

2 irb(main):001:0> string = "Mike"

3 "Mike"

4 irb(main):002:0> string.class

5 String

6 irb(main):003:0> string[0]

7 77

8 irb(main):004:0> string[0].class

9 Fixnum

10 irb(main):005:0> string[0,1].class

11 String

12 irb(main):006:0> string[0,1]

13 "M"

2.3 Making soundex More Rubyesque

The Ruby soundex code presented in code listing 3 is fragile. When I use it on strings, all is well, but should
I accidentally use it on a variable containing a number, as in code listing 5, something else happens. Perl
automatically morphs the contents of scalars between numbers and strings, but Ruby expects you to be
explicit about this. If an object does not does not respond to a method, Ruby complains.

Code Listing 5: Passing Ruby’s soundex a number

1 irb(main):018:0> soundex(2)

2 NoMethodError: undefined method ‘upcase’ for 2:Fixnum

3 from (irb):8:in ‘soundex’

4 from (irb):18

5 from :0

The things I can do to mitigate this include:

Argument Checking

I can test the class of the argument using the class method available to all Ruby objects.

Turn the Argument into a String

I can use the to s method which turns Ruby objects into Strings.

Make soundex a String Method

I can put soundex into the String class and make it look more like a builtin.

I prefer to make soundex act more like a builtin String method. Ruby allows me to add methods to classes
at any time. I can add soundex to the String class so that it is available to Strings and classes derived from
them for the duration of the program.

When I use soundex as a String method call, the thing being encoded is available through a variable self
or I can use implicitly as the default object. In the code listing 6 there is an implied self in the copy =
upcase.tr ’^A-Z’, ’’ which I could write as the equivalent copy = self.upcase.tr ’^A-Z’, ’’.

http://www.theperlreview.comThe Perl Review (0 , 6) · 11

Delightful Languages: Ruby

Code Listing 6: Adding soundex to String

1 class String

2 def soundex(nocode=nil)

3 copy = upcase.tr ’^A-Z’, ’’

4 return nocode if copy.empty?

5 first_letter = copy[0, 1]

6 copy.tr_s! ’AEHIOUWYBFPVCGJKQSXZDTLMNR’,

7 ’00000000111122222222334556’

8 copy.sub!(/^(.)\1*/, ’’).gsub!(/0/, ’’)

9 "#{first_letter}#{copy}000"[0 .. 3]

10 end

11 end

I saved code listing 6 in soundex.rb, and running irb in the same directory as soundex.rb I could make
soundex available to all Strings and objects in subclasses of String. In code listing 7, I ran an irb session
to try it. The soundex method is not available until I load the file containing String#soundex, soundex.rb,
with require.

Code Listing 7: Importing the soundex method

1 irb(main):001:0> str = "Mike"

2 "Mike"

3 irb(main):002:0> str.soundex

4 NoMethodError: undefined method ‘soundex’ for "Mike":String

5 from (irb):2

6 irb(main):003:0> require ’soundex’

7 true

8 irb(main):004:0> str.soundex

9 "M200"

In code listing 8 I create a Surname subclass of String and check that soundex is available. The < in the
class line means that Surname is a subclass of String. In the last couple of lines I show that surname really
is a Surname object, and that I can tell that surname’s class is derived from String. In Perl I would use
something like $s->isa(’String’) to do this.

Code Listing 8: Creating the Surname subclass

1 irb(main):005:0> class Surname < String

2 irb(main):006:1> end

3 nil

4 irb(main):007:0> surname = Surname.new(’Stok’)

5 "Stok"

6 irb(main):008:0> surname.soundex

7 "S320"

8 irb(main):009:0> surname.class

9 Surname

10 irb(main):010:0> surname.kind_of? String

11 true

http://www.theperlreview.comThe Perl Review (0 , 6) · 12

Delightful Languages: Ruby

2.4 Testing the Code

The soundex code seems to work, but I do not feel happy until I have a basic set of tests I can run to make
sure that innocuous changes do not break things.

Ruby’s equivalent to CPAN is the Ruby Application Archive (RAA). I use Nathaniel Talbott’s Test::Unit
package which makes writing and running test cases a breeze.

To use Test::Unit, I just have to put all my test cases in a class derived from Test::Unit::TestCase, and
Test::Unit will find all the methods and run named test * in that class. Test::Unit has a number of assertion
methods I can use, but my test cases are so simple that they only use a few.

Ruby has the FILE token, so I can add a line to my module to see if the module (soundex.rb) is the
program being run or whether it is being included from another file. If it is being included Ruby should not
run the tests, and if I run the file directly, it should run the tests.

To add unit tests to the code presented above I add them to the bottom of the file, as in code listing 9.

Code Listing 9: Testing soundex

1 if __FILE__ == $0

2 require ’test/unit’

3

4 class TC_Soundex < Test::Unit::TestCase

5 def test_knuth

6 [%w(Euler Ellery E460),

7 %w(Gauss Ghosh G200),

8 %w(Hilbert Heilbron H416),

9 %w(Knuth Kant K530),

10 %w(Lloyd Ladd L300),

11 %w(Lukasiewicz Lissajous L222),

12].each do |test|

13 assert_equal(test[0].soundex, test[-1])

14 assert_equal(test[0].soundex, test[1].soundex)

15 end

16 end

17

18 def test_empty

19 assert_nil(’’.soundex)

20 end

21

22 def test_non_alpha

23 assert_nil(’2+2=4’.soundex)

24 end

25

26 def test_mike

27 assert_equal(’Mike’.soundex, ’M200’)

28 assert_equal(’Stok’.soundex, ’S320’)

29 end

30

31 def test_czarkowska

32 # in the old perl version this was a bug which caused a

33 # discrepancy between Oracle’s soundex and mine. Spotted

34 # by Rich Pinder

35

http://www.theperlreview.comThe Perl Review (0 , 6) · 13

Delightful Languages: Ruby

36 assert_equal(’CZARKOWSKA’.soundex, ’C622’)

37 end

38

39 def test_nocode

40 assert_equal(’’.soundex(’?’), ’?’)

41 end

42 end

43 end

I run the tests by executing the module directly.

[mike@ratdog ruby-soundex]$ ruby soundex.rb
Loaded suite soundex
Started
.......
Finished in 0.041179 seconds.
6 tests, 18 assertions, 0 failures, 0 errors

2.5 Packaging the Code

When I get a Perl module from CPAN, I know that I can install it with the familiar perl Makefile.PL,
make, make test and make install ritual.

The Ruby module world has not yet settled into a predictable pattern for module installation. If I want to
use code from a library file, then the file has to be in one of the directories mentioned in the $: variable
which is like Perl’s @INC (Ruby does not have built-in formats).

3 Impressions of Ruby

I really like Ruby. I thought I would like it when I saw it first more than a year ago, and I still like it. I still
use Perl, and I think that Ruby has improved my Perl.

I find Ruby’s clean class and method definitions make me much more inclined to make new classes for
different types of object in my code. I can use various helper modules like base in Perl, but I prefer the look
of Ruby.

I try to adopt the Extreme Programming “test first” strategy when developing Ruby code. This means that
I am less likely to get caught out by the lack of explicit scoping commands. I like the control that my gives
me in Perl. While giving me more control, my does clutter up the code and lets me get away with long
rambling subroutines. Ruby encourages me to write small routines and think about minimizing the scope of
variables.

The abundance of unit tests provided with most of the code on the Ruby Application Archive makes me
much more comfortable when I am trying to fix flaws in code. When I needed to fix a couple of problems in
Sean Russell’s amazing Ruby Electric XML (REXML) package, the unit tests allowed me to see how much
damage I was doing.

http://www.theperlreview.comThe Perl Review (0 , 6) · 14

Delightful Languages: Ruby

I have avoided going over areas which are well covered in other articles which introduce Ruby. I found the
Doctor Dobb’s article by Dave Thomas and Andy Hunt a good introduction to Ruby’s features. I found that
Ruby has enough features which are different enough from those in Perl that it made me think differently
about problems; if I had to pick one to begin with then it would be the yield method.

3.1 A yield Digression

I can use yield to build generators and iterators. I can do this in Perl and Python too, but Ruby’s libraries
make so much use of iterators that they do not seem at all unusual.

The Ruby Enumerable module class uses yield in the select which selects items from a collection by calling
a user specified block of code on each element of the collection. This is much like Perl’s grep BLOCK LIST,
where grep calls BLOCK on each element of LIST. I use this to select all the elements smaller than a pivot
from an array in Ruby.

lesser = list.select { |e| e < pivot }

The block is called on each element of C¡list¿, if the element is less than the pivot then that element is
included in the list which is returned. In Perl I perform the selection using this code:

my @lesser = grep { $_ < $pivot} @list;

In Perl the code block comes between grep and LIST, and in the Ruby the block comes at the end. I prefer
the Ruby style, especially if I need to split the code across multiple lines.

When I want to allow the user to pass a block of code to a method I just call yield with the argments I want
to pass into the block. Python recently acquired yield, so the simple Ruby transliteration of Paul Prescod’s
fib gen2 routine from The Perl Review (0,2) might look like code listing 10. The fib gen2 method yields
control to a user supplied block of code each time around the count.times loop.

Code Listing 10: Ruby fibonacci number generator

1 def fib_gen2(count)

2 this_number, next_number = 1, 1

3 count.times do

4 yield this_number, next_number

5 this_number, next_number = next_number, this_number + next_number

6 end

7 end

8

9 fib_gen2(100) { |n1, n2|

10 puts "#{n1} #{n2}"

11 }

http://www.theperlreview.comThe Perl Review (0 , 6) · 15

Delightful Languages: Ruby

4 Ruby Resources

The Ruby community is active and varied. There are many local Ruby User Groups, and there is an annual
Ruby Conference.

One of the things which attracted me to Ruby was its community. The spirit reminds me of the Perl
community in the early 1990s.

There are many Ruby resources on the net. Over the past couple of years Ruby resources have started to be
available in more languages than Japanese and English. There are links to the entire text of Programming
Ruby.

The comp.lang.ruby Newsgroup

Ruby’s author and many active contributors participate in the news group. I find the traffic moderate
and the signal-to-noise ratio high.

#ruby-lang on irc.openprojects.net

There is a Ruby IRC channel. I don’t use IRC.

Ruby Language and Ruby Garden Web Sites

The main Ruby language web site is at http://www.ruby-lang.org . This site contains pretty much
everything you need to explore Ruby and get started. It has links to other introductory articles.

The community web site for Ruby is http://www.rubygarden.com . This has all kinds of useful resources
including a Ruby wiki and a summary of the past week’s activity on the newsgroup.

Ruby Application Archive (RAA)

The Ruby Application Archive is Ruby’s equivalent to CPAN. There is a link to it on the Ruby language
web site mentioned above.

If I wanted to use Perl-style formats then a search of the RAA would get me to Paul Rubel’s FormatR
package (billed as “just like Perl’s plus some and the ability to go in reverse.”)

Ruby Books

The most popular English language book about Ruby seems to be Programming Ruby by David Thomas
and Andrew Hunt. This book had the same effect on my appreciation of Ruby as the first edition of
Programming Perl had on my interest in Perl. My copy has become quite dog-eared—always a good
sign that I find a book useful.

Programming Ruby is available on-line at http://www.rubycentral.com/book/index.html . This is a
perfect complement to the print version, and the introduction to Ruby is a good read.

Hal Fulton’s The Ruby Way is an excellent source of all kinds of techniques you can use in Ruby. It is
task-oriented and includes an appendix on coming to Ruby from Perl.

5 Conclusion

I like Ruby because it seems to have struck the right balance between simplicity and power. The language
is different enough from Perl to make me think about things in a fresh light. The Ruby community is active
and helpful. The texture of Ruby encourages me to write code which seems to make sense months later.

http://www.theperlreview.comThe Perl Review (0 , 6) · 16

Delightful Languages: Ruby

I feel like the time I have spent with Ruby has been as rewarding as the time I spent with Perl. Admittedly
the Ruby Application Archive is not as big as CPAN, and some of Ruby’s features might appear in Perl 6,
but I still think it is worth giving Ruby a try.

6 References

The Ruby Language - http://www.ruby-lang.org/

“Programming in Ruby”, Dave Thomas and Andy Hunt, Dr. Dobbs, January
2001,http://www.ddj.com/documents/s=871/ddj0101b/0101b.htm

http://www.germane-software.com/software/rexml/ - the REXML module. The tutorial for this package
might give you a better feel for Ruby’s character.

One way of insinuating Ruby code into a Perl world is the devious use of Brian Ingerson’s Inline::Ruby
module from CPAN.

7 About the Author

I work for Exegenix in Toronto, writing Perl to transform documents into other documents. I enjoy life with
my wife and daughter, Perl and Ruby coding, hot air ballooning, beer and chocolate (even white chocolate,
as long as it’s a Toblerone).

http://www.theperlreview.comThe Perl Review (0 , 6) · 17

Who’s Doing What? Analyzing Ethernet LAN Traffic

by Paul Barry, paul.barry@itcarlow.ie

Abstract

A small collection of Perl modules provides the basic building blocks for the creation of a Perl-based
Ethernet network analyzer. I present a network analyzer that captures local area network (LAN) traffic
destined for the local domain name system (DNS) server and logs information on which IP addresses
request which IP name resolutions. The developed program can form the basis of any custom Ethernet
LAN analyzer.

1 Introduction

Plenty of tools can capture and analyze network traffic. On Ethernet local area networks (LAN), EtherPeek
and Surveyor are heavy-hitting commercial offerings, whereas on Unix platforms, there is tcpdump and
Ethereal. These are excellent tools that provide a large, and sometimes intimidating, set of features.

At times, though, I need something else. Perhaps I need to analyze a new or custom protocol not allowed
for by existing tools, or I need to process each captured chunk of network traffic. In these cases, I need a
programming language that can talk to the LAN.

I could always use C. On Unix platforms, the libpcap library provides an Ethernet packet-capturing pro-
gramming interface written in C and is used by both tcpdump and Ethereal, but dropping down to C takes
too much time when I am in a hurry.

2 Perl and CPAN to the rescue!

The Comprehensive Perl Archive Network (CPAN) has a number of module interfaces to libpcap. My
favourite is Tim Potter’s Net::Pcap which is a blow-for-blow mapping of the libpcap interface into its Perl
equivalent.

To make the most of Net::Pcap I have to study the pcap documentation and this is very tough going.
Thankfully, Tim provides a companion module, Net::PcapUtils, which abstracts all the nitty-gritty details of
Net::Pcap into a very small collection of functions and methods. When combined with his NetPacket module
which can decode and encode a growing collection of network packets, Net::PcapUtils forms the basis of an
network analyzer.

The NetPacket module can decode raw Ethernet frames, Internet Protocol (IP) datagrams, Unix Domain
Protocol (UDP) datagrams and Transmission Control Protocol (TCP) segments, which corresponds to the
three lower levels of the TCP/IP Reference Model: the Host-to-Network, Network , and Transport Layers,
respectively. NetPacket does not handle the final, topmost layer, the Application Layer.

18

Who’s Doing What? Analyzing Ethernet LAN Traffic

3 Who’s Doing What?

The Who’s Doing What (wdw) program in code listing 1 captures and processes details of the IP addresses
which are resolving IP names against the local DNS server. In addition to displaying the results on screen
as they happen, it logs each request to a file.

On lines 5 and 6, I define two constants, DNS PORT and HOWMANY. The DNS PORT is the standard
protocol port number for DNS, and HOWMANY is the default number of packets to capture.

On line 14, I declare and define a global variable, $num processed, which I use to record the number of
packets I process.

My first programming language was Pascal which explains the definition of my subroutines before I actually
use them. I explain these later.

On line 59, I set the number of packets to process. If I do not provide a command line argument, I use the
value of HOWMANY. Immediately upon setting $count, I remember its initial value in $rem count because
my while loop, starting on line 76, changes the value of $count.

On line 61, I call the Net::PcapUtils::open function which places the Ethernet card into promiscuous mode
for packet capturing. The two parameters to open specify the protocol filter—DNS uses UDP—and the
maximum amount of data to capture for each packet—1500 bytes is the maximum payload size on Ethernet
networks. If open succeeds, $pkt descriptor is reference to a valid packet capture descriptor. If it fails it
returns an error message which I check for this on line 65. On error I display an appropriate error message
and then exit.

On line 71, I open the log file in append mode and on line 74 I timestamp it at the beginning of the run.
On line 79, I send the output from got a packet to this file.

The while loop on lines 76 to 81 is the guts of the program. With each iteration, I call the Net::PcapUtils::next
subroutine with my packet capture descriptor in $pkt descriptor. This subroutine waits for a UDP packet
then returns two values—a scalar which represents the raw Ethernet packet, which I store in $packet, and a
hash, which I do not need. I pass the raw Ethernet packet to got a packet, which also takes the log filehandle.
The while loop iterates $count times.

On lines 17 and 18, in got a packet, I assign the two parameters to $handle and $packet. I will append the
results to the log file using $handle and use the contents of $packet to create a NetPacket::IP object. On
lines 20 and 21, the NetPacket::Ethernet::eth strip subroutine removes the Ethernet frame from $packet and
returns the IP datagram, and NetPacket::IP::decode extracts the IP data portion. The UDP datagram is in
the data portion of the IP datagram.

Once I have the UDP object, on line 25 I check if the destination port is the port stored in DNS PORT. If
it is, on line 27 I assign the data portion of the UDP datagram to $dns packet.

The NetPacket modules knows nothing of the protocols running at the Application Layer, the level of DNS.
On line 28, I use the Net::DNS::Packet module to decode the data portion from the IP packet, then on line
29, I extract the DNS queries from that and store them in @questions.

One line 31, I iterate over @questions and process each DNS query. On line 33, I get the current query in
stringified form, and on line 35 I skip queries that match in-addr.arpa since those relate to IP addresses,
not names.

http://www.theperlreview.comThe Perl Review (0 , 6) · 19

Who’s Doing What? Analyzing Ethernet LAN Traffic

Lines 39 to 44 outputs the source and destination IP addresses together with the IP name to the screen and
log-file. On line 46, I increment $num processed since I have processed the right sort of query.

On lines 52 to 57, the display results subroutine prints a summary message that shows the number of packets
processed, in $num processed, and the number of packets actually processed, in $outof.

Code Listing 1: The Who’s Doing What program

1 #!/usr/bin/perl -w

2 use 5.6.0; # Change to 5.006_000 if using Perl 5.8.0.

3 use strict;

4

5 use constant DNS_PORT => 53;

6 use constant HOWMANY => 100;

7

8 use Net::DNS::Packet;

9 use Net::PcapUtils;

10 use NetPacket::Ethernet qw(:strip);

11 use NetPacket::IP;

12 use NetPacket::UDP;

13

14 our $num_processed = 0;

15

16 sub got_a_packet {

17 my $handle = shift;

18 my $packet = shift;

19

20 my $ip_datagram = NetPacket::IP->decode(

21 NetPacket::Ethernet::eth_strip($packet));

22

23 my $udp_datagram = NetPacket::UDP->decode($ip_datagram->{data});

24

25 if ($udp_datagram->{dest_port} == DNS_PORT)

26 {

27 my $dns_packet = $udp_datagram->{data};

28 my $dns_decode = Net::DNS::Packet->new(\$dns_packet);

29 my @questions = $dns_decode->question;

30

31 foreach my $q (@questions)

32 {

33 my $question = $q->string;

34

35 unless ($question =~ /in-addr\.arpa/)

36 {

37 $question =~ /^(.+)\tIN/;

38

39 print "$ip_datagram->{src_ip} -> ";

40 print "$ip_datagram->{dest_ip}: ";

41 print "$1\n";

42 print $handle "$ip_datagram->{src_ip} -> ";

43 print $handle "$ip_datagram->{dest_ip}: ";

44 print $handle "$1\n";

45

46 $num_processed++;

47 }

48 }

http://www.theperlreview.comThe Perl Review (0 , 6) · 20

Who’s Doing What? Analyzing Ethernet LAN Traffic

49 }

50 }

51

52 sub display_results {

53 my $outof = shift;

54

55 print "\nProcessed $num_processed (out of $outof) ";

56 print "UDP datagrams carrying DNS.\n\n";

57 }

58

59 my $count = shift || HOWMANY;

60 my $rem_count = $count;

61 my $pkt_descriptor = Net::PcapUtils::open(

62 FILTER => ’udp’,

63 SNAPLEN => 1500);

64

65 if (!ref($pkt_descriptor))

66 {

67 warn "Net::PcapUtils::open returned: $pkt_descriptor\n";

68 exit;

69 }

70

71 open WDW_FILE, ">>wdw_log.txt"

72 or die "Could not append to wdw_log.txt: $!\n";

73

74 print WDW_FILE "\n", scalar localtime, " - wdw BEGIN run.\n\n";

75

76 while ($count)

77 {

78 my ($packet, %header) = Net::PcapUtils::next($pkt_descriptor);

79 got_a_packet(*WDW_FILE, $packet);

80 $count--;

81 }

82

83 print WDW_FILE "\n", scalar localtime, " - wdw END run.\n";

84 close WDW_FILE;

85

86 display_results($rem_count);

4 Running wdw

I login as root to run the wdw program because I need to put the Ethernet network interface card (NIC)
into promiscuous mode, which is a restricted activity that only root can do.

The default number of packets to capture is 100. I supply a single, positive integer argument to wdw on the
command line if I want to capture a different number.

The program output shows up on standard output and in the log file. I ran the program with fictitious IP
addresses I already set up to create the sample in code listing 2. The address 10.0.0.5 provides DNS to my
fictitous local network.

http://www.theperlreview.comThe Perl Review (0 , 6) · 21

Who’s Doing What? Analyzing Ethernet LAN Traffic

Code Listing 2: wdw output

1 10.0.0.65 -> 10.0.0.5: www.theprelreview.com.

2 10.0.0.65 -> 10.0.0.5: www.theprelreview.com.itcarlow.ie.

3 10.0.0.65 -> 10.0.0.5: www.theperlreview.com.

4 10.0.0.200 -> 10.0.0.5: www.perl.com.

5 10.0.0.200 -> 10.0.0.5: search.cpan.org.

6 10.0.0.39 -> 10.0.0.5: www.linuxjournal.com.

7 10.0.0.88 -> 10.0.0.5: www.apple.com.

8 10.0.0.118 -> 10.0.0.5: glasnost.itcarlow.ie.

9 10.0.0.118 -> 10.0.0.5: www.wileyeurope.com.

10 10.0.0.118 -> 10.0.0.5: www.wiley.com.

11 10.0.0.65 -> 10.0.0.5: www.amazon.com.

12

13 Processed 11 (out of 100) UDP datagrams carrying DNS.

On line 1 of code listing 2, the misspelling of “prel” instead of “perl”, causes the lookup to fail. The client
program, upon failing to lookup www.theprelreview.com, tried to resolve the name as if it were a host on
the local internet domain, itcarlow.ie. This accounts for the rather long hostname on line 2.

5 Conclusion

Any half-decent network manager (or sysadmin) will tell me the information logged by wdw is more than
likely logged by my DNS server. It is easy for most Perl programmers to write a quick program to extract
the data items of interest from the DNS log. However, wdw displays the data as it happens, whereas instead
of after-the-fact. I can also use this as the basis of more complicated real-time analyzers.

6 References

The pcap(3) manual page.

Module documentation - NetPacket, Net::Pcap, Net::PcapUtils, and Net::DNS.

Tim Potter’s modules - http://search.cpan.org/author/TIMPOTTER.

Michael Fuhr’s Net::DNS website - http://www.net-dns.org.

Internet RFCs: 1034 and 1035 for the original DNS standards.

Programming the Network with Perl, chapter 2, by Paul Barry. John Wiley & Sons Limited, 2002, ISBN
0-471-48670-1.

libpcap library - http://www.tcpdump.org

wdw source code - http://glasnost.itcarlow.ie/˜barryp/wdw.tar.gz

http://www.theperlreview.comThe Perl Review (0 , 6) · 22

Who’s Doing What? Analyzing Ethernet LAN Traffic

7 About the Author

Paul Barry (paul.barry@itcarlow.ie) lectures in Computer Networking and Systems Administration at The
Institute of Technology, Carlow in Ireland. Paul is the author of Programming the Network with Perl (Wiley,
2002). He occasionally writes for Linux Journal magazine and web site.

http://www.theperlreview.comThe Perl Review (0 , 6) · 23

Book Reviews

Book Reviews

Extending and Embedding Perl

Tim Jenness and Simon Cozens, Manning Press,
1-930110-82-0, August 2002; 312 pages
reviewed by Andy Lester

The great thing about the Perl book business these
days is that publishers seem to have cycled their way
through all the general books and are focusing on
narrower topics. These books are not for everyone,
but they’re authoritative, and are just the book you
need for certain tasks. Recent examples include “Pro-
gramming The Network With Perl”, “Writing Perl
Modules For CPAN” and the new “Extending and
Embedding Perl”.

Everything related to Perl internals is found here: the
Perl internal API, XS, SWIG, embedding Perl in C,
and C in Perl. The book is organized well, and is fine
as a reference work. Where the book falls flat is as
an introduction.

The presentation is more as a shop manual than a
tutorial. It’s almost as if the book was written for
someone already familiar with some of these concepts,
rather than to the experienced Perl programmer look-
ing to work outside the language itself. I would also
like to have seen more practical examples geared to-
ward the real user. One example talks about em-
bedding FORTRAN code into a Perl program, which
seems like a fairly unlikely Perl extension for most
readers. Another example shows how to replace the
configuration handling for the mutt mail reader with-
out even addressing why anyone would want to do
such a thing.

Also, experienced C programmers will have to skip
45 pages of an overview on C. I was surprised to see
it until I realized that here in the 21st Century there
may actually be people who do not know C. Am I
showing my age? Of course, any book that delves
into Perl internals is going to have all sorts of gory C
details.

Overall, there’s no life or humor in the writing, and
it is got the zest of an economics textbook. As a ref-
erence, that’s fine. For an introduction to this arcane
world, something needs to be there to help pull the
reader through.

For the reader who needs something on paper, or
needs a solid reference, this book is authoritative. If
you are looking for something to get you started in
the arcane world of Perl internals, I’m afraid you’ll
be as disappointed as I was.

Books on Ruby

reviewed by brian d foy

I started learning Ruby so I could work on Mike
Stok’s article in this issue. As with any new thing
I learned, I surveyed the books available.

Ruby In A Nutshell, by Yukihiro “Matz” Matsumoto
(O’Reilly & Associates, 2002, 204 pages, 0-596-00214-
9) was the Ruby book I thought would be most useful,
but the class reference is organized by type rather
than alphabetically which makes me do a lot of work
to figure out where I need to look. I constantly had to
use the index, which annoyed me. Other than that,
the book is up to O’Reilly’s usual standards, although
I do not recommend it.

Programming Ruby, by Dave Thomas and Andrew
Hunt (Addison-Wesley, 2001, 564 pages, 0-201-71089-
7) is a delight to read, even if the order of topics is a
bit strange. If you already know a bit about program-
ming and have worked with another object-oriented
language, even if that was just Perl, you should have
an easy time learning Ruby from this book. The class
reference at the end of the book is in alphabetic or-
der, so you do not need Ruby In A Nutshell if you
have this book.

The Ruby Way, by Hal Fulton (Sams, 2002, 579 pages,
0-672-32083-5) is mostly a Ruby cookbook. The first
half of the book deals with very simple recipes for
common tasks, and the latter half deals with more
complex and less frequently encountered problems.
The author put a lot of code into this book. The in-
troduction by Matz, Ruby’s creator, and Hal’s pref-
ace provide a good introduction to the Ruby mindset.
You should read even if you do not need the book.

The Ruby Developer’s Guide by Robert Feldt and
Lyle Johnson (Syngress, 2002, 693 pages, 1-928994-
64-4) is a task-oriented book. It covers GUI toolkits,
databases, XML, and web services along with bits
of Ruby wisdom and developer tools. If you do not
already know Ruby, save this book for later.

http://www.theperlreview.comThe Perl Review (0 , 6) · 24

