
ASubjective Look at Object-Oriented Programming
M i k e S t o k

software world. The only way to make
sure that no more “bad” software is pro¬
duced is for everyone to stop program¬
ming! Merely being object-oriented
doesn’t make apiece of software good,
in spite of assertions from certain mem¬
bers of the computing community.

Imust confess that laz iness was one of

my more notable attributes long before I
discovered Perl, and as Ion can testify
(having waited the best part of ayear for
this article) that hasn’t changed. One
thing to keep in mind is that this is
merely some opinions Iformed between
1986/7 (when C++ was still aslim new
language whose C-with-Classes roots
were still evident) and 1996. In particular
Ican indulge in afine display of hand-
waving generalism from aposition of
very little practical experience; my
objective here is to stir up afew inquisi¬
tive thoughts, not to teach object oriented
programming in 21 column inches.
[Hah! Try 160. -ed.]

You could say that OOP is just acollec¬
tion of programming techniques that
allow the designer and programmer to
think about aproblem in an abstract way,
and that OO languages provide con¬
structs supporting those techniques.
Despite what some people seem to sug¬
gest about OOP’s benefits, Ihave yet to
see any evidence that it is miraculous
enough to stop me going bald or make
peeling my socks off at the end of the day
any more pleasant.

Another resource is the new edition of
Programming Perl [Wall 96], which has
sections on packages, objects and mod¬
ules that expand on the documentation
supplied with recent (5.002 and later)
versions of Perl. The Perl distribution
contains several manual pages relevant
t o O O P :

There is, however, some “meat” in this
article. Timothy Budd has given me per¬
mission to use the Eight Queens problem
and solutions presented in his book
[Budd 91], which is recommended from
time to time by Dean Roehrich on
comp.lang.perl.misc. It appealed to me
because it deals with Object-Oriented
Programming (OOP) from aphilosophi¬
cal perspective, using several languages
as examples rather than dwelling on the
features of one. This is auseful approach
for tackling OOP in Perl, which enables
you to program in an OO style without
forcing you to.

Using an OO technique to write some
code is no substitute for thinking about
the problem at hand during the design
phase, no matter how short or informal
that phase is. OO techniques might open
up avenues that you haven’t considered,
or suggest new twists and turns in famil¬
iar paths. Or it might do nothing at all.
Fortunately, Perl doesn’t force you to
write every program in OO style; it has
all of the features but none of the con¬

straints. Many factors might affect how
much OO you throw at aproject; to me,
the three most important factors are:

p e r l o b j P e r l o b j e c t s
perltie Perl objects hidden behind
simple variables
perlbot Perl OO tricks and examples

These pages assume that you’re up to
speed with Perl data structures and pack¬
a g e s .

This article aims to fill some part of the
space between the manual pages and
“real” books on OO programming and
design by presenting asmall but com¬
plete example of an object-oriented pro¬
gram. It’s little more than an appetizer;
as usual with things Perlish (and real)
there’s more than one way to do it, and a
class design that seems natural and
appropriate to some may seem outland¬
ish and crazy to others.

Budd uses four languages in his first edi¬
tion: Object Pascal, C++, Objective C,
and Smalltalk. The second edition of the

book has been expanded to include lava.
It’s interesting to see how the languages
approach OO and how languages like
C++ and Objective C, which share a
common base language, have taken dif¬
f e r e n t r o u t e s t o O O n i r v a n a .

1. Language features. Many new lan¬
guages (and afew old ones, such as
Smalltalk) offer the syntactic and seman¬
tic constructs necessary for OO, which
means there’s probably an existing body
of code large enough to have evolved
some common idioms. It’s possible to
use OO methods in alanguage lacking
OO features. It’s just harder.B u d d ’ s b o o k i s a u s e f u l r e s o u r c e . I t h a s a

good glossary which ties together some
of the noodles in the soup of OO termi¬
nology, and abroad bibliography if
you’re interested in seeing just how old
some of these “new” concepts are.

W I N T E R 1 9 9 6

2. The programmer’s background. If a
programmer is familiar with OO tech¬
niques, he can employ those techniques
even in languages which doti’t directly

T H E P E R L J O U R N A L

(Un)Common Sense

Itend to be alittle skeptical of tech¬
niques that people proclaim will save the

3

It’s away of writing reusable software.
Since objects can have well-defined
interfaces (read: acceptable ways to prod
them and what to expect them to do
when prodded) and are responsible for
implementing those behaviors, people
can write code without having to know
what’s under the hood. That way, when
you inevitably change the internal work¬
ings of your object, the people using
your objects never even have to know.

the associated routines provided to
manipulate files) as aprecursor to
some of the Cbased 00 languages. It’s
not too big astretch to envision STDIO
implemented so that instead of:

support 00. (And conversely, adyed-in-
the-wool Cor assembly programmer
might choose to avoid 00 features even
in alanguage that supports them.)

3. The environment. Programs are not
created in avacuum. Frequently the
development tools used with aparticular
language evolve to reflect the features
available in that language, and employ
phrases and models derived from the lan¬
guage. Different OOP environments
have been around for awhile now, and if
ateam of programmers is familiar with,
say, Smalltalk and its environment, they
might well take adifferent approach than
if the environment had been C++ or Java
flavored .

f p r l n t f (f h , " f o r m a t % s \ n " , " s t r i n g ") ;

you used

f h . f p r i n t f (" f o r m a t % s \ n " , " s t r i n g ") ;

R e s p o n s i b i l i t y

(What’s that?)
in aC-with-Classes-like language.

Once you start “thinking 00” you’ll be
able to see how the features available to

you in aparticular language might be
used to help you develop software
whether that language be Perl, Java, or
'Visual Cobol++, much like an under¬
standing of regular expressions allows
you to use the various regex tools to their
greatest potential.

T h e r e a r e s e v e r a l l e v e l s a t w h i c h t h e

word “responsibility” can be bandied
a b o u t . I ’ l l l o o k a t t h e h u m a n s i d e o f

responsibility first. One of Perl’s
strengths is the way modules and blessed
references have made the CPAN (Com¬
prehensive Perl Archive Network) possi¬
ble; many modules depend on other
modules. The tacit assumption that
objects will behave properly has encour¬
aged authors to use one another’s code,
because they trust that objects won’t pull
any surprises on them.

Different 00 languages were designed
with different goals in mind, and this has
amajor impact on the features alan¬
guage offers as well as the computational
expense of OO techniques. In the intro¬
duction to their book, Ellis and Strous-
trup comment: f h i n k 0 0 ? ” B u d dSo, how can you

identifies three perspectives as particu¬
larly important:Because C++ has been in use

for large software projects, sta¬
bility and compatibility have
been important considerations
in the development of the lan¬
guage; so has run-time and
space efficiency. Time and
space overheads above those
for Care considered unaccept¬
able for C++.

It’s away of viewing the world. The
objects in the program can be used in a
way that makes computation act as a
simulation of the real world (or whatever
real world programmers inhabit.)
Objects describe the behavior of the
thing being simulated, and instances of
objects (that is, particular lower-case-o
objects that you create, as opposed to the
Object definition itself) maintain their
state. Objects exhibit behavior when you
prod them; in some languages the prod
might look like afunction call, and in
others it might be amessage passed to
the object.

Some languages enforce policies which
make it even easier to reap these benefits.
Perl just provides the mechanisms to let
you develop OO code—it’s your respon¬
sibility to choose whether your code
makes use of the “unpublished” details
of an implementation (say, for speed rea¬
sons) or adheres to the published inter¬
face. And it’s the responsibility of the
object creator to make sure that the defi¬
nitions are clear and unambiguous, and
to specify exactly what state and behav¬
iors are accessib le v ia the in ter face. A

well designed object (or class of objects)
discourages people from circumventing
its interface, and suggests ways in which
the interface can be used to extend i ts

capabilities. It takes agood designer to
pull this off, but it’s an important skill.

F
I These aims led to alanguage quite philo¬

sophically different than languages like
S m a l l t a l k . T h e m o r a l ? B e a w a r e t h a t

your favorite OO language may not be
the best for the job at hand.

T h e B e n e fi t s o f O O P

It’s away of dealing with complexity.
OOP offers the programmer another way
to abstract information. An object can be
adescendant of another object, with dif¬
ferences in behavior and state, or it can
simply contain entirely separate objects.
In either case, the object need only con¬
tain the code distinguishing it from the
other objects; the shared code can be del¬
egated to other objects.

In some ways, 00 facilities can be
viewed as an evolutionary step for
imperative languages. Three of the four
languages in Budd’s book are descen¬
dants of existing languages and even
Java can be considered as aneutered and

buffed up descendant of C++. It’s a
stretch, but you can think of the file
data structure in C’s STDIO (along with

Budd describes atechnique he calls
“Responsibility-Driven Design” to dis¬
cover classes which can be used to model

asituation. He suggests using physical
index cards to define responsibilities and
classes. The limited space on an index

W I N T E R 1 9 9 6 T H E P E R L J O U R N A L.S

Our answer masquerades as aqueen in
the column, just off the board. To deal
with the 0*'’ column, we use aspecial
class of Queen, aQueen:
is asimple Queen with degenerate
responses. In addition to the responsibil¬
i t ies ou t l ined on the f ron t o f our CRC

card, there’s aprint (i responsibility,
which prints out its row and column
information after asking its neighbors to
do the same.

removed from aplain jane solution using
linked lists and global functions. Budd’s
solution resembles aconventional gener¬
ate and test approach, but the important
behaviors have been encapsulated in an
object.

card means that aclass design which
embodies too much complexity is easy to
spot; if you can’t describe it in a3”x5”
space, your object is attempting too
much. In some si tuat ions the division of

asystem into classes, objects, and
responsibilities may be obvious. But it’s
not always, and Budd’s index card sys¬
tem seems l ike areasonable method for

determining whether your division is
appropriate. Personally, I’ve never had to
model anything overly complex, and
recently Ihaven’t even collaborated with
others on adesign, so Ican’t attest to
how well Budd’s system works with
Per l .

w h i c h; r ; u

In Budd’s implementation, each queen
communicates with exactly one of her
neighbors. As each queen is created, it’s
initialized with aposition, and then the
resulting setup is checked to see w'hether
it’s avalid solution. Aqueen does this by
asking its left-hand neighbor, “Can Ibe
attacked?” If so, it generates the next
position and test that, repeating until a
safe position is generated, at which point
the queen replies with an “OK.”

T h e M a i n P r o g r a m

Without further ado, here’s the entire
program. If it looks too small, that’s
because the tricky behaviors are hidden
inside the Queen and Queer. ; ; : :ul l
c l a s s e s .

E igh t Queens i n Pe r l
! I ; / u s r / b i n / p e r i - v ;

ACRC Card fo r aQueen
Once again my laziness steps in to save
me as Ipresent an example from Budd’s
book—the Eight Queens problem. On an
chessboard (an 8x8 grid), aqueen can
attack anything in the same row, column,
or diagonal. The problem is this; how
can you place eight queens on achess¬
board such that no queen can attack
another? Consider the chessboard below.

It has four queens; no two are in the same
row, column, or diagonal; if you can
place four more queens on the chess¬
board and still satisfy that condition,
you’ll have solved the Eight Queens
problem. Try it!

u s e s t r i c t :

B u d d ’ s c a l l s h i s i n d e x c a r d s “ C R C

cards”, for Class, Responsibilities, and
Collaborators. It’s all part of his philoso¬
phy of responsibility-driven design, and
he touts them early on in his book. Part of
the rationale is that if you can’t describe
the class on a3” x5” index card, it’s too
complex.

Q u e e n ;
r e q u i r e Q u e e n :
r e q u i r e

N ’ u i

!ay SiascQueen;
my Scc iur r in ;
m y S n e i g h b o r = n e ’ z ; Q u e e r. : ;

foreach Scolumn (1 :
S l a s t G i - i e e r . = n e v ; Q ' c
S l a s . 0 ’ a e e r . - > i r i i c i a '

(S c o l ’ j . T. r
S l a s - Q r

) ;

S n e i g h b o r

5 i a s t Q u e e n - > f : r s c ()
$ l a :T h e f r o n t o f a C R C c a r d d e fi n e s t h e

interface to the object; the back describes
the data values used to maintain its state.

The front and back of our Queen CRC
card are shown here;

c r . c O ;.C--

The code first generates the special
Queen: ;Null object (:
Next, the Queen objects are instantiated
(with new ())and then initialized (with
;nitia,icoi'ar,no), SO that they know
which column they inhabit and who their
neighbors are. It would ha\e been quite
easy to combine instantiation and initial¬
ization into the new () routine, and in
some applications this might make
sense. But in other applications one
might want to reinitialize without having
to reinstantiate; that is. to go back to
square one without having to create the
square itself from scratch.

1).

Queen

i n i t i a l i z e r o w, t h e nfi r s t

find first acceptable solution for
self and neighbors

advance row and findn e x t

next acceptable solution

c a n A t t a c k s e e w h e t h e r a

position can be attacked by self
or neighbors

Queen -data values

c u r r e n t r o w n u m b e r
O v e r v i e w o f t h e S o l u t i o n n e v . ' I) a n d i n i t i a l C o l u m n {)A f t e r

are used to instantiate and init ial ize the

chessboard, the rightmost queen is prod¬
ded, triggering aflurry of communica¬
t i o n u n t i l a v a l i d s o l u t i o n i s f o u n d . A t

that point the rightmost queen is prodded
in adifferent way, using the print ()
method, to print the solution.

r o w

(changes)Iselected the 8Queens problem because
Budd presents full solutions in his book
for Smalltalk, C-F+, and Objective C. My
Perl solution is derived from the Objec¬
tive Cversion, which seems to be reason¬
ably object-oriented without being too
t h e p e r l j o u r n a l

c o l u m n c o l u m n n u m b e r

(fixed)

neighbor neighbor to left
(fixed)

WINTER 19966

4The Queen ClassNote that Queen: :Null has no initializ-
iation method, and that it’s derived from
the Queen class. (Actually, you can’t
infer the class relationship from the
names alone: the mere fact that Queen
and Queen: :Null have similar names
doesn’t necessarily imply asemantic
linkage.) Since Queen’s new() uses no
arguments, we now know that
Queen: :Null’s new also requires no
arguments; since one inherits from the
other, the two new () sare one and the
same. Think about that—if, the Queen
class had rolled initialization into its
new () method, then it might be neces¬
sary to override it for Queen; ;Mul 1in a
language with stronger typing than Perl.
As usual with Perl, there’s more than one

way to do it...

The Queen class is the real “meat” of the
program—it’s here that methods which
store the state of each Queen and imple¬
ment its behavior are defined. You’ll
want to visit http://tpj.com/programs and
grab the entire program from there.

P E R L
M A S T E R Y

T h e n e v ; () a n d i n i t i a l C o l u m n ()
methods handle instantiation and initial-
iziation. As with many Perl classes, the

() constructor returns ablessed ref-

O ’ R e i l l y ’ s b o o k s a r e

P R A C T I C A L A N D R E A D A B L E ^ — Y E T

N E V E R S A C R I F I C E T E C H N I C A L

A C C U R A C Y A N D D E P T Hn e w

erence to an anonymous hash. That hash
is then used to store instance variables.

This heavily revised second

edition of Programming Perl
contains afull explanation of

Perl version 5.002 features.

It’s the authoritative guide

to Perl—the scripting utility
now established as the World

Wide Web programming tool
of choice. The book is

coauthored by Larry Wall,
the creator of Perl.

s u b n e v ; {

m y $ t y p e = s h i f t ;
r e t u r n b l e s s { } , $ t y p e ;

}

The output from the above code is shown
on the next page. s u b i n i t i a l C o l u m n {

m y S s e l f = s h i f t ;
$ s e l f - > { c o l u m n) =
$ s e l f - > { n e i g h b o r } = s h i f t ;
r e t u r n ;

s h i f t ;
The Queen::Null Class

The first object generated in the program
is the special Queen: :Null which is
used to guard the 0*'’ column. All it does
is supply methods that let the queen in
the column behave sensibly. As asub¬
class of Queen, it implements the meth¬
ods on the front of the Queen CRC card:
(plus that pesky print ().) Here it is:

p a c k a g e Q u e e n : : N u l l ;

j

Note that ini t ialColumn () ini t ial izes
only those variables described as “fixed”
on the back of the CRC card.

first {), shown on the next page, ini¬
tializes the row (which varies, unlike the
column), and asks its neighbor Queen for
alegal position. Then it employs the
testorAdvance () method to deter¬
mine whether the current position is
legal or if it can find alegal position by
asking its neighbor to shuffle around a
bit. That may cause the neighbor to shuf¬
fle about by talking to its neighbor, and
so on. As usual, 1means success and 0
means fai lure.

@ I S A = q w (Q u e e n) ;

s u b c a n A t C a c k { r e t u r n 0 ; }

s u b fi r s t (r e t u r n 1 ; }

s u b n e x t (r e t u r n 0 ;]
s u b p r i n t { r e t u r n ; } Programmtng Perl, 2ml Edition

By Larry Wall, Ratidol LSchwartt &
Tom Christiansen

2nd Edition September 1996
700 pages. ISBN 1-S6S92-M9-6

$19.95

1 ;

You can see that Queen: :Null imple¬
ments pretty simple behavior for its
responsibilities —the null queen can't
a t tack any th ing , and fi rs t !) a lways
succeeds. If next() is invoked, then we
know we’re out of possible positions, so
it fails, print () is ano-op.

The method testorAdvance () wasn’t
mentioned on the Queen CRC card, and
isn’t part of the public interface. Some
languages have ways of specifying
exactly how private or public amethod
is. But in Perl, it’s the designer’s respon¬
sibility to document the interface, and
the programmer’s responsibility to obey.
A s i t s n a m e s u g g e s t s , t e s t O r A d -

() checks to see if its position is
threatened by neighbors. If it’s safe, it

T V

O’REILLY
101 Morris SIroel, Sebastopol, CA 95472

lax: 707-g29-0104

Credit card orders: SOO-6S9-8969
Weekdays 6ah-5pm PST

For Inquiries: e00-99a-9935, 707-829-051S
Prices do not Include shipping and handling

To request our catalog: calalog<9onllne.ora.com
For complete descrlpllons ol all our titles,

check out http://www.oia.com/
Also available at local bookstores.

Note that having this special behavior in
aQueen: :Nul 1object lets us avoid hav¬
ing lots of special cases in the “real”
Queen class, described next.

v a n c e

T H E P E R L J O U R N A L7W I N T E R 1 9 9 6

The OO style I’ve shown here isn’t too
distant from the non-OO solution aCor
Perl programmer might write. There’s
nothing magic about object-oriented pro¬
gramming, and Ihope that this simple
example will whet your appetite for
exploring more about OO methodology.

and in fact my code on the TPJ web site
avoids this method entirely, settling
instead for aforeach loop appended to
the main program that iterates through
all of the queens and display the row and
column information with Perl’s regular
printO function.

returns atrue value. Otherwise, it tries to
find the next legal position.

canAttackt) is used to ask whether a
neighbor (or any of its neighbors) can
attack aparticular square on the board.
The design is such that it’s not necessary
to check whether there’s another queen
in agiven column, since the foreach
loop in our main program iterates across
columns. So we only need to check the
rows and the diagonals.

Budd’s book is awell-rounded sur\'ey of
the OO landscape, and Budd doesn’t
have an axe to grind in favor of any par¬
ticular language. The exercises from the
relevant chapter in Budd’s book might be
interesting and instructive, as might
looking at the solutions he presents in
other languages.

W r a p p i n g U p

Here’s the solution generated by my
code ;

r o w ; 1 c o l u m n : 1
r o w : 5 c o l u m n : 2

r o w : 8 c o l u m n : 3
r o w : 6 c o l u m n ; 4

r o w : 3 c o l u m n : 5
r o w : 7 c o l u m n : 6
r o w : 2 c o l u m n : 7
r o w : 4 c o l u m n ; 8

The next () method contains some key
information; how many rows there are on
the chessboard, and what to do when she
needs to wrap around from bottom to top
in its search for the next safe square,
next () returns 1if it can find alegal
next position, and 0if it can’t. Note that
both next () and testOrAdvance()
employ recursion; as next() is men¬
tioned on the CRC card, the public might
stumble into it. That’s why we turn off
Perl’s $''W variable—so that the nor¬
mally desirable warning about deep
recursion (which we perform intention¬
ally) will never reach the user.

E x e r c i s e s

1. Modify any one of the programs to
produce all possible solutions, rather
than just asingle solution. How many
possible solutions are there for the Eight
Queens puzzle? How many of these are
rotations of other solutions? How might
you filter out rotations?

which conesponds to this chessboard;

M
m .m.%

%
mm

m m%

2. Suppose we generalize the Eight
Queens problem to the NQueens prob¬
lem, where the task is to place Nqueens

NXNchessboard. How should the
programs be changed?

iiS)'m
%

Lastly, there’s the print () method that
we added to the Budd’s published inter¬
face on the CRC card. There’s nothing
particularly inspiring about print (),

%
m o n a n*

. K i :

m

5 P1
m

s u b c a n A t t a c k {
m y $ a e l f = s h i f t ;
m y $ r o w = s h i f t ;
m y $ c o l u m n = s h i f t ;

$sel f->{row} == $row and return 1;

#Scd and $rd contain the column and row
#d i f fe rences be tween the pos i t ion and th is tp ieen .
#If $cd == $rd, they're on the same diagonal,
my Sod =abs (Sco lumn -$se l f -> (oo lumn}) ;
m y $ r d = a b s ($ r o w - $ s e l f - > { r o w)) ;
$ c d = = $ r d a n d r e t u r n 1 ;

return $self->{neighbor}->canAttaok($row,Scolumn);

s u b fi r s t {
m y S s e l f = s h i f t ;

$ s e l f - > { r o w)

i f ($ s e l f - > (n e i g h b o r) - > fi r s t O) t
r e t u r n S s e l f - > t e a t O r A d v a n o e () ;

1 ;

1
r e t u r n 0 ;

)

s u b t e s t O r A d v a n o e {
m y S s e l f = s h i f t ;

i f (Saelf->tneighbor)->canAttaok(@{$self}{ ' row', 'column'}))(
r e t u r n S s e l f - > n e x t () ;)

}
r e t u r n 1 ;

s u b n e x t {
m y S s e l f = s h i f t ;
l o c a l S ‘ W = 0 ;
if (Sself->(row) == 8) {

u n l e s s (S s e l f - > { n e l g h b o r) - > n e x t ()) { r e t u r n 0 ;)
e l s e { $ s e l f - > { r o w) = 0 ; }

}

t u r n w a r n i n g s o f f

s u b p r i n t i
m y S s e l f = s h i f t ;

S s e l f - > { n e i g b b o r) - > p r i n t () ;

p r i n t " r o w : S s e l f - > { r o w) c o l u m n : S s e l f - > { c o l u m n } \ n " ;
r e t u r n ;

}
S s e l f - > { r o w } + + ;
r e t u r n S s e l f - > t e s t O r A d v a n o e () ;

)

)

WINTER 1996
T H E P E R L J O U R N A L

It’s clear that some values of Nprohibit
solutions; consider N=2or N=3. What
happens when your program is executed
for these values? How might you pro¬
duce more meaningful output?

Mindscape Technologies
offers computer programming training over your
existing intranet. Lessons reinforced via exam¬

ples, field trips, and labs. Students utilize the built-
in development environment to develop and run
code. Perl, Unix Shell, and HTML with CGI and

JavaScript are currently available. Java, C-i-i-, and
Python are coming soon. Contact

Mindscape Technologies at
(408) 229-0119 or

http://www.randysoft.com for atest flight.

3. Using whatever graphics facilities
your system has, alter one of the pro¬
grams to display dynamically on achess¬
board the positions of each queen as the
program advances. What portions of the
program need to know about the display?

F i n a l l y

If you’ve enjoyed this article, let me
know—I’m stok@psa.pencom.com and
if people say enough nice stuff and ask
about particular topics they’d like me to
ramble about. I’ll continue these themes
in aseries of irregular columns.

C a n o n
Canon Research Centre Europe

W e ' r e l o o k i n g f o r :B i b l i o g r a p h y

[Budd 91] Timothy Budd, An Introduc¬
tion To Object-Oriented Programming,
Addison-Wesley, Reading, MA, 1991.
I S B N 0 - 2 0 1 - 5 4 7 0 9 - 0 .

00 design &development
document analysis
no suit required
w o r k fl o w

self managing
communication skil ls

P e r i s
S G M L
C + +

Quake
W W W

n s n

[Ellis 90] Margaret A. Ellis and Bjarne
Stroustrup, The Annotated C++ Refer¬
ence Manual, Addison-Wesley, Reading,
MA, 1990. ISBN 0-201-51459-1.

[Wall 96] Larry Wall, Tom Christiansen
&Randal L. Schwartz, Programming
Perl (2nd Edition), O’Reilly &Associ¬
ates, Sebastopol, CA, 1996. ISBN 1-
5 6 5 9 2 - 1 4 9 - 6 .

W e ’ l l g i v e y o u :

Great working environment
Mugs of coffee
Aggressive salary and benefits
Peer pressure and inspiration
All the resources you need
Plenty of opportunities
Agood hiding at Quake

_ _ E N D _ _

Mike Stok is ahybrid systems adminis¬
trator/ programmer. He has aBS in Nat¬
ural Sciences (computing, archaeology,
psychology, management and electron¬
ics) works for PSA, and enjoys beer in
his spare time.

http: //wvTvr. ere .canon, co .uk/sas/
T H E P E R L j o u r n a l9W I N T E R 1 9 9 6

